انگلیسی…………………………… 72

 

فهرست شكل‌ها

 

شکل1-1: واحدهای TO4 در غربال مولکولی­های زئولیتی و آلومینوفسفاتی…………………………….    3

شکل 1-2: ساختار اتمی شبکه­ های CHA(a), MFI(b), AFI©, DON(d)…………………………….     5

شکل1-3: روش سنتز قالبی و قالب­های رایج در آن: 1. تک مولکول، 2. مولکول دوگانه دوست (دارای یک رشته‌ آلی چربی دوست (قرمز) و یک سر آب دوست (آبی): Amphiphile))و 3. مایسل (خوشه­ای از مولکول های دوگانه-دوست: Micelle)) و 4. مواد پیچیده­تر، 5. یک ساختار کروی، 6. دسته­ای از ساختارهای کروی……………………………….     9

شکل 3-1: نمایی از نحوه­ فعالیت پتاسیواستات…………………………………………………………….. 32

شکل 4-1: الگوی XRD غربال مولکولی نانوساختار SAPO………………………………………………. 39

شکل 4-2: الگوی XRDغربال مولکولی نانوساختار NiSAPO……………………………………………. 40

شکل 4-3: تصویر SEM غربال مولکولی نانوساختار SAPO………………………………………………. 41

شکل 4-4: تصویر SEM غربال مولکولی نانوساختار NiSAPO……………………………………………   42

شکل 4-5: آنالیز FTIR  غربال مولکولی نانو ساختار SAPO ……………………………………………..   43

شکل 4-6: آنالیز FTIR کاتالیزور  نیکل SAPO………………………………………………………………   43

شکل 4-7: ولتامتری چرخه­ای الکترود الف CPE و  ب الکترود اصلاح شده 25%SAPO/CPE  در محلولmM  10 پتاسیم فری سیانید وM 1/0  KCl با سرعت اسکنmV/S   20 و pH=7……………………44

شکل4-8: ولتامتری چرخه­ای الکترود SAPO/CPE  25% در محلول  در محلولmM  10 پتاسیم فری سیانید وM 1/0  KCl در سرعت اسکن­های بالاتر از 350 میلی ولت برثانیه و شکل الحاقی در سرعت اسکن­های کمتر از 350 در همان شرایط………………………………………………………………………………………..45

شکل 4-9 :شکل  برحسب  برای ولتامتری چرخه­ای اکسیداسیون K4Fe(CN)6 در صفحه­ی  (b)SAPO/CPE و (a)  CPE با سرعت اسکن­های مختلف……………………………………………………………..47

شکل 4-10: ولتامتری چرخه­ای الکترود (a)CPE و الکترود SAPO/CPE 25% (b) بعد از قرارگرفتن در محلول 1/0  مولار نیکل کلراید و به همراه ولتامتری چرخه­ای قبل از گذاشتن الکترودها در محلول 1/0 مولار نیکل کلراید…………………………………………………………………………………………………………………….48

شکل4-11: مقایسه­ شدت جریان پیک آندی الکترودهای اصلاح شده در حضور و در غیاب متانول…..49

شکل 4-12: a چرخه ولتامتری Ni/NSAPO/CPE  در سرعت اسکن­های  کمتر از 300میلی­ولت بر ثانیه در محلول  1/0  مولار  NaOH  . b شکل Ep  بر حسب Log υ  برای  پیک­های آندی (a)  و کاتدی (b) ولتامتری چرخه­ای نمایش داده شده در قسمت a . c  وابستگی جریان­های پیک­های آندی و کاتدی  به سرعت اسکن در سرعت اسکن­های کمتر(5 تا 75 میلی­ولت بر ثانیه).  d شکل  جریان­های پیک­های آندی و کاتدی بر حسب 2/1υ  برای سرعت اسکن­های بالاتر از  75 میلی­ولت بر ثانیه………………………………….50

شکل 4-15: تغییرات نرخ  Ipa/Ipc  برای Ni-SAPO/CPE نسبت به سرعت اسکن در محلول NaOH 1/0 مولار  ▲در غیاب متانول ■ در حضور متانول با غلظت 005/0 مولار…………………………………………….58

شکل 4-16: منحنی تافل و منحنی الحاقی ولتامتری چرخه­ای الکترود اصلاحی در محلول NaOH  1/0 مولار و در حضور متانول با غلظت 005/0 مولار با سرعت اسکن mV/s 20………………………………………58

شکل4-17:  a  کرنوآمپرومتری دوپله­ای الکترود Ni/NSAPO/CPE  در محلول NaOH 1/0  مولار باغلظتهای  0، 0015/0، 003/0، 01/0 مولار متانول (گام­های پتانسیل به ترتیب 7/0 و 3/0 بر حسب Ag/AgCl/KCl )   b  منحنی جریان بر حسب زمان در I غیاب متانول و II حضور متانول c  وابستگی  به  از روی داده ­های کرنوآمپرومتریc  وابستگی جریان به  از داده ­های کرنوآمپرومتریd  وابستگی نرمال شده­ی شکلc  به غلظت متانول………………………………………………………………………………………..59

شکل 4-18: نمایش رفتار نمایی کرنوآمپرومتری الکترود  Ni/NSAPO/CPE در مقابل الکترود  CPE….61

شکل 4-19: تصویرSEM  a) الکترود خمیر کربن b) الکترود خمیرکربن اصلاح شده با SAPO %25w/w  c) الکترود خمیرکربن اصلاح شده با SAPO بعد از لود شدن در محلول نیکل کلراید 1/0مولار…………….63

فهرست جداول

 

خرید اینترنتی فایل متن کامل :

 

 پایان نامه و مقاله

 

جدول 1-1: مثال­هایی از زئولیت­های کوچک، متوسط، بزرگ حفره……………………………………………………….. 5

جدول 2-1: کشف­ها و پیشرفت­های اصلی در زمینه­ مواد غربال کننده­ مولکولی در طی این دوره                   23

جدول 2-2: سیر تکامل زئولیت­های آلومینوسیلیکاتی از دهه­ 1950 تا دهه­ 1970………………. 24

جدول 4-1: جدول محاسبات ks  از طریق معادله (5) و شکل b4 برای mV 200<E∆…………………. 52

جدول 4-2: محاسبه مقدار kcat……………………………………………………………………………………………………………………. 60

جدول 4-3: مقایسه­ ثابت نرخ کاتالیزوری (kcat) برخی از الکترودهای اصلاحی در اکسیداسیون متانول.61

مروری کلی بر غربال مولکولی سیلیکوآلومینوفسفات[1]

نزدیک به شش دهه است که پیشرفت­های تاریخی در مورد غربال­های مولکولی صورت گرفته است. این پیشرفت­ها از غربال­مولکولی­های آلومینوسیلیکاتی شروع شده و به مواد آمورف سیلیسی با تخلخل­های میکرونی[2]، پلی­مورف­­های[3] بر پایه­­ی آلومینوفسفات، کامپوزیت­های متالوسیلیکات و متالوفسفات، چارچوب­های هشت وجهی – چهاروجهی، غربال­های مولکولی متخلخل مزو و اخیراً به چارچوب­های آلی فلزی  هیبریدی رسیده است ]1[.

زئولیت­ها، با خاصیت غربال مولکولی دارای کاربرد گسترده­ای در صنایع ازجمله کاتالیزور، جاذب و مبادله­گرهای یونی می­باشند. آن­ها کریستال­های آلومینوسیلیکاته با شبکه­ سه بعدی هستند که دارای حفراتی در ابعاد مولکولی می­باشند. این حفرات از حلقه­های متصل به هم در یک شبکه از اکسیژن و اتم‌های چهاروجهی مانند Si و یا Al (شکل 1-1) تشکیل شده ­اند. Si و Al در شبکه زئولیتی می­توانند با دیگر عناصر جایگزین گردد]1[. از این عناصر می­توان به آهن، ژرمانیوم  و نیکل اشاره کرد. هر اتم چهاروجهی به چهار اتم اکسیژن متصل می­گردد و هر اتم اکسیژن نیز به دو اتم چهار وجهی متصل می­ شود. با افزودن عناصر واسطه مواردی نظیر مساحت، BET و خاصیت اسیدی تغییر می­ کند.

برای اتم­های چهار وجهی چهار ظرفیتی مانند سیلیسیم و ژرمانیوم ساختار شبکه بطور طبیعی باردار خواهد شد و این در حالی است که اتم­های چهار وجهی سه ظرفیتی مانند آلومینیوم احتیاج به کاتیون­های متعادل کننده مانند Na+ یا H+ دارند. این کاتیون­های عضو شبکه زئولیتی نیستند و در کانال­ها جایگزین می­شوند] 9[. حضور عناصر دیگر به جای عناصر Si و Al در ساختار یک زئولیت بر روی اندازه حفرات، آب دوستی یا آب گریزی، مقاومت شیمیایی در برابر اسید و دیگر خواص زئولیت اثر خواهد گذاشت ]10[.

شکل 1-1 واحدهای TO4 در غربال مولکولی­های زئولیتی و آلومینوفسفاتی ‍

 

زئولیت­ها براساس ساختار شبکه خود با یک کد شناسه سه حرفی که توسط انجمن بین ­المللی زئولیت [5](IZA) مشخص شده است، شناخته می­شوند. تمام زئولیت­ها دارای حفراتی هستند که دارای قطر مشخصی می­باشند. این قطر از 3 انگستروم (زئولیت­های کوچک حفره) تا بزرگتر از 1 نانومتر (زئولیت­های بزرگ حفره) متغیر است ]11[. زئولیت­های متوسط حفره دارای 10 عضو در حلقه (7/0 تا  8/0 نانومتر) و فوق بزرگ دارای 14 عضو در حلقه می­باشند. مثال­هایی از این موارد در شکل 1-2 و جدول 1-1 ارائه شده است.

بعضی از زئولیت­ها دارای سیستم کانال­های 3 بعدی می­باشد که این سیستم در تمام جهات محورهای بلوری گسترده شده است. درحالی که دیگر زئولیت­ها دارای سیستم کانال­های یک یا دو بعدی هستند.

غربال­های مولکولی آلومینوفسفات (AlPO-n) و سیلیکوآلومینوفسفات (SAPO-n) مواد کریستالی کوچک حفره می­باشند ]12[. اگر ساختار چهاروجهی شامل آلومینیوم و فسفر با نسبت  Al/P=1 باشد شبکه خنثی خواهد بود. زمانی که بخشی از P5+  با Si4- جایگزین شود، یک شبکه آنیونی حاصل خواهد شد و کاتیون­های مازاد شبکه باید در تعادل بار با شبکه قرار گیرند.

 

شکل 1-2: ساختار اتمی شبکه­ های CHA(a), MFI(b), AFI©, DON(d). گره­ها در هر شبکه نشان دهنده اتم­های چهاروجهی و بازوها نشان دهنده اتصالات اکسیژنی است ]11[.

جدول 1-1 مثال­هایی از زئولیت­های کوچک، متوسط، بزرگ حفره] 11و12[

ساختار

اندازه حفرات

زئولیت­ با این ساختار ابعاد حفرات

اندازه حفرات

XRD (A˚)

نمونه­های دیگر

CHA

(small)

SAPO-34

SSZ-13

3 38/0  38/0

LTA(41/0)

GIS (48/0)

MFI

(medium)

ZSM-5

Silicate-1

2 53/0 56/0

MEL(54/0)

FER(54/0)

MOR

(large)

Mordenite 1 68/0 70/0

BEA(77/0)

FAU(74/0)

 

زئولیت­ها دارای حفراتی در ابعاد مولکولی هستند که دارای نرخ­های مختلف انتقال برای هر مولکولی می­باشد که نشان دهنده خاصیت غربال مولکولی آن­ها است. خاصیت غربال مولکولی هنگامی موثر خواهد بود که اندازه­ مولکول­ها یکسان نباشد. این ویژگی­ها موجب افزایش کاربرد آن­ها می­ شود.

 

 


 
موضوعات: بدون موضوع  لینک ثابت


فرم در حال بارگذاری ...