طراحی استراتژی کنترل سلسله مراتبی زمان واقعی در خودروهای هایبرید برقی |
. 131
1-5)پیاده سازی استراتژی کنترل سلسله مراتبی برای خودرو هایبرید موازی.. 134
2-5)شرایط گذر بین مدهای کنترلی.. 136
3-5) نتایج شبیه سازی.. 143
نتیجه گیری.. 149
نظرات و پیشنهادات.. 151
مراجع. 152
ضمائم. 158
فهرست شکلها و جدولها صفحه
شکل (1-1) ساختارسیستم کنترل خودرو هایبرید برقی را نشان می دهد. 9
شکل(2-1) استراتژی تقسیم توان براساس نقشه های بازده موتور احتراقی 14
جدول(1-1) نتایج شبیه سازی استراتژی کنترل 16
شکل(3-1) عملکرد موتور احتراقی برحسب متغیرهای مختلف 17
شکل(4-1) موقعیت کاری مطلوب برای یک موتور احتراقی 20
شکل(5-1) فرایند استراتژی کنترل تطبیقی 23
شکل(6-1) منحنی بازده انرژی موتور احتراقی 25
شکل(7-1) منحنی مصرف سوخت برحسب موتور الکتریکی 27
شکل(8-1) نمودار تغییرات شارژ باتری برحسب گشتاور موتور الکتریکی 28
شکل(9-1)منحنی مصرف سوخت برحسب تغییرات حالت شارژ باتری 29
شکل(10-1) تاثیر فاکتور تنظیم روی حالت شارژ باتری 31
شکل(11-1) مجموع انرژی محاسبه شده برای یک در خواست گشتاور و سرعت 32
شکل(12-1) منحنی آلودگی مربوط به NOx که تابعی از سرعت و گشتاور موتور احتراقی می باشد. 32
شکل(13-1) منحنی مربوط به مقدار دهی آلودگی 33
شکل(14-1) نرمالیزه کردن مصرف انرژی سوخت و آلودگی هوا 33
شکل(15-1) تابع فشرده کلی و تابع انرژی نرمالیزه شده 35
شکل(16-1) نتایج حاصل از بهینه سازی Baseline 36
شکل(17-1) نتایج حاصل از بهینه سازی تطبیقی 36
شکل(18-1) مقایسه نتایج حاصل از دو بهینه سازی زمان واقعی و Baseline 37
شکل(19-1) تاثیرl(0) بر DSOC 40
شکل(20-1) منحنی بازده موتور الکتریکی 43
شکل (21-1) مدل استاتیکی باتری 45
شکل(22-1) منحنی بازده باتری در حالت شارژ ودشارژ 45
شکل(23-1) نتایج شبیه سازی با در نظر گرفتن مصرف سوخت 48
جدول(2-1) نتایج شبیه سازی مربوط به مصرف سوخت و آلودگی 49
شکل(24-1)نتایج آلودگی و مصرف سوخت پس از حل مسئله بهینه سازی 50
شکل(25-1) نتایج بهینه سازی با در نظر گرفتن آلودگی و مصرف سوخت 51
نمودار (26-1) مراحل بهینه سازی دینامیکی را نشان می دهد. 52
شکل(27-1) منحنی نسبت تقسیم توان بهینه برحسب توان درخواستی روی سرعت سیستم انتقال 54
جدول(3-1) مقایسه نتایج حاصل از شبیه سازی برای استراتژی های کنترلی مختلف 55
شکل(28-1) ساختار کلی استراتژی کنترل براساس شناسایی الگوی رانشی 56
استفاده می شود. 57
شکل(29-1) فلوچارت و متغیرهایی که برای تعریف مجازی الگوهای رانشی منتخب بکار می رود. 57
جدول(4-1) شش الگوی منتخب که براساس فرایند شناسایی الگوی رانشی بدست آمده است 58
شکل (30-1) الگوی رانشی با میانگین توان پایین و تغییراستاندارد بالا 59
شکل (31-1) الگوی رانشی با میانگین توان بالا و تغییراستاندارد پایین 59
شکل(32-1) ساختار کلی استراتژی کنترل چند حالته 60
جدول(5-1) نتایج شبیه سازی حاصل از قانون کنترل زیر بهینه برای هر الگوی حرکتی منتخب 60
جدول(6-1) مقایسه نتایج حاصل از کنترل تک حالته و چند حالته وکنترل بهینه 61
شکل(33-1) ساختار خودرو هایبرید با کنترل کننده دینامیکی 63
شکل(34-1) نتایج حاصل از شبیه سازی استراتژی کنترل دینامیکی 64
شکل(35-1) نتایج حاصل از شبیه سازی براساس استراتژی کنترل لیاپانوف 66
شکل(36-1) ساختار کنترل عصبی تطبیقی 67
شکل(37-1) ساختار کنترل کننده مورد نظر برای خودرو هایبرید برقی 69
شکل(1-2) ساختار کنترل کننده فازی 75
شکل(2-2) توابع عضویت ورودی و خروجی 77
شکل(3-2) منحنی تغییرات مقدار K 77
شکل(4-2) سطح فازی استراتژی کنترل 78
شکل(5-2)نتایج شبیه سازی برای سیکلهای رانشی مختلف 78
شکل(6-2) ساختار کنترل کننده فازی 79
شکل(7-2) نتایج حاصل از شبیه سازی استراتژی کنترل 81
شکل(8-2) تغییرات ولتاژ باتری 81
شکل(9-2) ساختار کنترلر فازی بهینه 82
شکل(10-2) ساختار استراتژی کنترل فازی 84
جدول(1-2) محدوده تغییرات هر یک از ژنها 87
جدول (2-2) مقایسه جوابهای بهینه با دوروش گرادیان و الگوریتم ژنتیک 88
جدول(3-2) مقایسه نتایج آلودگی های محیط زیستی دو روش الگوریتم ژنتیک و گرادیان 88
شکل (11-2) منحنی های لحظه ای آلودگی CO 89
شکل(1-3) ساختار یک سیستم پیوسته 92
شکل(2-3) ساختار سلسله مراتبی یک سیستم هایبرید 93
شکل(3-3) ساختار کلّی یک استراتژی سوئیچینگ 94
شکل(4-3) ساختار ماشین حالت محدود برای سیستم انتقال اتوماتیک 95
شکل(5-3) ساختار کنترل ترموستاتی برای کنترل دما 96
جدول (1-3) بعضی از حالتهای عملکردی در خودرو هایبرید برقی را نشان می دهد. 100
شکل(6-3) ساختار کنترل سلسله مراتبی در خودرو هایبرید برقی 101
شکل(7-3) ساختار الکتریکی و مکانیکی خودرو هایبرید سری 107
شکل(8-3) ساختار مکانیکی و الکتریکی خودرو هایبرید موازی 109
شکل(9-3) مدهای کنترلی در خودرو هایبرید برقی 111
شکل(1-4) ساختار خودرو هایبرید موازی موجود در نرم افزار Advisor 114
شکل(2-4) کنترل نظارتی سلسله مراتبی خودرو هایبرید برقی 114
شکل(3-4) ساختار کنترل نظارتی که درجعبه ابزار stateflow پیاده سازی شده است. 116
شکل(4-4) استراتژی کنترلی سطح بالا و پیاده سازی آن در محیط Simulink 117
شکل(5-4) ساختار کلّی استراتژی کنترل فازی 118
شکل(6-4) توابع عضویت ورودی مربوط به کنترل کننده فازی را نشان می دهد. 119
شکل(7-4) مدلسازی خودرو هایبرید موازی و ساختار کنترل کننده نظارتی 120
جدول(1-4) نتایج حاصل از آلودگی و مصرف سوخت با استراتژی کنترل فازی 120
شکل(8-4) نتایج حاصل از شبیه سازی استراتژی کنترل فازی 121
جدول(2-4) نتایج آلودگی و شبیه سازی با استراتژی کنترل فازی موجود در Advisor 122
جدول(3-4) نتایج آلودگی و شبیه سازی با استراتژی Baseline موجود در Advisor 122
شکل(9-4) ساختار استراتژی کنترل نظارتی برای خودرو هایبرید سری 123
خرید اینترنتی فایل متن کامل :
شکل(10-4) ساختار کلّی استراتژی کنترل فازی برای کاهش تغییرات نقطه کار موتور احتراقی 125
شکل(11-4) توابع عضویت ورودی برای کنترل کننده فازی 126
جدول(4-4) مقادیر قطعی مربوط به ΔPg 127
جدول(5-4) پایگاه قوانین فازی 127
شکل(12-4) نتایج شبیه سازی استراتژی کنترل فازی بر اساس مدلسازی دینامیکی زیر سیستم ها .
شکل(1-5) نقاط کار بهینه و منحنی بازده موتور احتراقی 133
شکل(2-5) نقاط کار بهینه و منحنی بازده موتور الکتریکی 133
شکل(3-5) نقاط کار بهینه و منحنی بازده باتری 134
شکل(4-5) زیر حالت مربوط به مد هایبرید(1) 137
شکل(5-5) زیر حالت مربوط به مد هایبرید(2) 138
شکل(6-5) زیر حالت مربوط به مد هایبرید(2) 139
شکل(7-5) زیر حالت مربوط به مد هایبرید 140
شکل(8-5) حالت مربوط به مد شارژ مجدد باتریها 141
شکل(9-5) مدهای کنترلی در مد رانشی 141
شکل(10-5) مدهای کنترلی در مد ترمزی 142
شکل(11-5) ساختار کنترل سلسله مراتبی خودرو هایبرید برقی به همراه مدل سازی دینامیکی خودرو هایبرید 143
شکل(12-5) سیکل رانشی CYC_CHSVR 144
شکل(13-5) گشتاور موتور الکتریکی (Tem) و گشتاور موتور احتراقی (Tice) 144
شکل(14-5) منحنی تغییرات نقطه کار موتور احتراقی 145
شکل(15-5) حالت شارژ باتری ها را نشان می دهد 146
شکل(16-5) سرعت خودرو پس از دنبال کردن مسیر حرکت 146
شکل(17-5) شبیه سازی استراتژی کنترل Baseline 147
شکل(18-5) سیکل رانشی CYC_ECE 147
شکل(19-5)نتایج شبیه سازی روی سیکل CYC_ECE 148
شکل(20-5) سرعت خودرو را نشان می دهد. 148
شکل(1-ض1) ساختار اصلی سیستم های فازی خالص 161
شکل(2-ض1) ساختار اصلی سیستم فازی TSK 161
شکل(3-ض1) ساختار اصلی یک سیستم فازی با فازی ساز و غیر فازی ساز 162
شکل(4-ض1) تابع عضویت μ را برحسب e(t) نشان می دهد. 163
شکل(5-ض1) نمایش گرافیکی غیر فازی ساز مرکز ثقل 165
شکل(6-ض1) نمایش گرافیکی غیر فازی ساز میانگین مراکز 165
شکل(7-ض1) ساختار سیستم فازی تولید شده توسط ANFIS 168
شکل(8-ض1) مراحل طراحی سیستم فازی با ANFIS 169
شکل (1-ض2) ساختار یک ماشین حالت محدود در محیط stateflow 172
جدول (1-ض3) مشخصات موتور القایی 175
جدول (2-ض3) مشخصات موتور DC 176
شکل(3-ض3) منحنی بازده موتور DC 176
شکل(4-ض3) منحنی بازده موتور احتراقی 177
جدول (3-ض3)مشخصات خودرو 178
جدول (4-ض3)مشخصات خودرو 178
آلودگی شهرهای بزرگ سالهاست که به یک مسئله حاد تبدیل شده است. تحقیقات کارشناسی نشان می دهد که علّت اصلی آلودگی شهرها، خودروهایی با موتور احتراق داخلی می باشند. خودروهای احتراقی معایب فراوانی دارند که از آن جمله می توان به مواردی چون وابستگی به یک نوع انرژی خاص (نفت)، تولیدگازهای گلخانه ای مانند ،تولید گازهای سمی مانند،و، تولید آلودگی صوتی، راندمان پائین سیستم و در نتیجه اتلاف انرژی اشاره نمود. با توجه به موارد فوق خودروهای برقی از دهه 1890مطرح شده و تا دهه 1930 پر طرفدار بوده اند. با پیشرفت خودروهای احتراقی، خودروهای برقی کم کم به فراموشی سپرده شدند تا اینکه در سال 1960 به بعد مجدداً با توجه به مشکلات خودروهای احتراقی، محققین به فکر چاره افتادند و تحقیقات مختلفی را در مورد خودروهای برقی آغاز نموده اند. خودروهای هایبرید برقی نوع تعمیم یافته خودروهای برقی خالص می باشند که معایب خودروهای برقی خالص تا حدودی در آنها برطرف گردیده است. در حقیقت این خودروها حد واسطی بین خودروهای متداول با موتور احتراقی و خودروهای برقی خالص می باشند.استفاده از موتور الکتریکی با راندمان بالا، امکان بازیابی انرژی و قابلیت جابجائی نقطه کار موتور احتراقی به نواحی با راندمان بهینه،کاهش آلودگی و افزایش راندمان کلی این خودروها را فراهم ساخته است.
فرم در حال بارگذاری ...
[جمعه 1400-05-08] [ 09:19:00 ق.ظ ]
|