پدیده تشدید در اجزای سازه و سیستم‌های مکانیکی، عمر تجهیزات را کم می‌کند و حتی باعث شکست کامل و زودرس می‌گردد. تشدید، تحت تاثیر ویژگی‌های جرم و سختی سازه می‌باشد. آنالیز مودال، مودهای ارتعاشی و فرکانس‌های آن را به‌دست می‌آورد. این روش برای سازه‌های ساده قابل استفاده است. اما وقتی‌که سازه پیچیده می‌شود یا تحت بارگذاری‌های پیچیده قرار می‌گیرد، از روش تحلیل المان محدود برای به‌دست آوردن فرکانس‌های طبیعی و مودهای سیستم استفاده می‌گردد. 1-1 تاریخچه‌ای به روش‌های حل مسایل ارتعاش آزاد ورق‌ها شروع مطالعه رفتار ارتعاشی ورق‌ها به انتهای دهه 1800 باز می‌گردد، زمانی که ریلی روش معروف خود را برای بررسی ارتعاش آزاد سازه‌ها ارائه داد. [3] پس از آن ریتز در سال 1909 روش ریلی را با در نظر‌گرفتن مجموعه‌ای از تابع‌های شکل آزمون بهبود بخشید، که هر‌کدام ضرایب دامنه مستقلی دارند. به این ترتیب روش ریلی-ریتز به یکی از روش‌های تقریبی پرکاربرد در زمینه بررسی رفتار ارتعاش سازه‌ها تبدیل شد. پس از آن، تحقیقات گسترده‌ای در زمینه ارتعاش ورق‌هایی با شکل‌های مختلف، شرایط مرزی و بارگذاری متفاوت صورت گرفت. بخش عمده‌ای از این مطالعه‌ها به ورق‌های نازک محدود می‌شود که در آن از اثر تغییر شکل‌های برشی صرف‌ نظر شده است. [8] بر خلاف ورق‌های نازک، اثر تغییر شکل‌های برشی در ورق‌های ضخیم قابل ملاحظه است. صرف نظر‌کردن از اثر‌های برشی در این نوع ورق‌ها ، منجر به افزایش قابل ملاحظه مقدار فرکانس‌های ارتعاشی در جهت عدم اطمینان می‌شود. از این رو تئوری‌های تغییر شکل برشی مرتبه اول[1] مانند تئوری ریزنر–‌‌میندلین و دیگر تئوری‌های تغییر شکل برشی مرتبه‌های بالاتر[2] توسط محققین مختلف برای بررسی رفتار ارتعاش ورق‌ها مورد استفاده قرار گرفته است. میندلین و همکارانش، ارتعاش ورق‌های مستطیلی ضخیم با شرایط مرزی چهار طرف مفصل و شرایط لوی را بررسی نمودند و حل تحلیلی آن‌ ها را ارائه دادند. آن‌ ها به این نتیجه رسیدند، که در ورق های چهار طرف مفصل سه دسته مود مستقل قابل حصول است. هم‌چنین در‌هم‌کنش سایر مودها برای ورقی با یک جفت مرز آزاد و جفت دیگر مفصلی مورد مطالعه قرار گرفت. نور [9] در سال 1973 به بررسی ارتعاش آزاد ورق‌های مرکب لایه‌لایه‌ پرداخت. وی نتیجه‌های حاصل از تئوری کلاسیک ورق لایه‌لایه[3]، تئوری میندلین و تئوری الاستیسیته سه‌بعدی را با یکدیگر مقایسه نمود وبه این نتیجه رسید، که تئوری کلاسیک ورق برای تخمین رفتار ارتعاش ورق‌هایی با درجه عمودسانگردی بالا و نسبت ضخامت به طول بیشتر از 1/0 مناسب نیست. این در‌حالی‌است که نتایج تئوری میندلین، برای برآورد فرکانس‌های ارتعاش پایین در ورق‌های نسبتا ضخیم لایه‌لایه‌ای با نسبت ضخامت به طول کمتر از2/0 رضایت‌بخش است. میدان جابجایی و تنش‌های عرضی، به‌دلیل حفظ شرایط همسازی و تعادل از شرایط پیوستگی نوع  در راستای ضخامت ورق برخوردارند. بر این اساس، تئوری‌های مختلفی برای مسایل ورق و پوسته‌ها توسط محققین ارائه شده است. از میان انبوه تئوری‌های موجود، آن دسته از تئوری‌هایی که متغیرهای مجهول آن‌ ها از جنس جابجایی هستند، براساس چگونگی تعریف مولفه‌های میدان جابجایی و مدل‌سازی پیوستگی بین لایه‌ها در دو گروه طبقه‌بندی می‌شوند. الف) تئوری‌های لایه‌لایه‌ای [5] در این دسته از تئوری‌ها، میدان جابجایی درهر لایه به صورت مستقل تعریف می‌شود. بنابراین در لایه ام خواهیم داشت. [1] First-order shear deformation theory [2] Higher-order shear deformation theory [3] Classical laminated plate theory [4] Finite Strip method [5] Layerwise models    

موضوعات: بدون موضوع  لینک ثابت


فرم در حال بارگذاری ...