1-1              اهمیت پروژه

به کمک انجام عملیات پیش‌فرآوری مناسب بر روی مواد پسماند نساجی می‌توان به اهدافی چون تشکیل ساختاری سلولزی با بلورینگی کمتر، کاهش ناخالصی‌های موجود در کالا و همچنین افزایش سطح در دسترس سوبسترا دست یافت[7].

1-2               هدف

پنبه
پارچه
پیش‌فرآوری
 تولید بیوگاز
 هیدرولیز آنزیمی
تولید اتانول

پنبه فرآوری شده

(ویسکوز)

 )FTIR ,NREL

SEM,Swelling (

آنالیز مواد توسط

شکل ‏1‑1-مراحل انجام این پروژه

1-3              کارهای مرتبط انجام‌گرفته

باتوجه به اهمیت افزایش زباله‌های نساجی در سال‌های اخیر، فعالیت‌های مقدماتی در این راستا انجام شده است. جیحانی‌پور و همكارانش[6]، از پیش‌فرآوری با حلال نرمال متیل مورفولین نرمال اکسید[12] برای بهبود تولید بیوگاز از پارچه‌های زائد استفاده کردند. تاثیر پیش‌فرآوری با این حلال در 3 غلظت متفاوت شامل انحلال کامل (غلظت 85 % نرمال متیل مورفولین نرمال اکسید)، بالونی شدن[13](غلظت 79 % نرمال متیل مورفولین نرمال اکسید) و تورم[14](غلظت 73 % نرمال متیل مورفولین نرمال اکسید) مورد مطالعه قرار گرفت. در نهایت شرایط بهینه در غلظت 85 % نرمال متیل مورفولین نرمال اکسید و دمای 120 درجه سانتی‌گراد ،تحت فشار اتمسفریک و به مدت 5/2 ساعت حاصل شدکه تحت این شرایط بهینه بازده متان نمونه پنبه از 02/0 % نمونه پیش‌فرآوری نشده به 30 % رسید.

جیحانی‌پور و همكارانش[8]، اثر فرایند دو مرحله‌ای  استفاده از راکتور CSTR[15]  به همراه راکتور با بستر پوشانده شده از لجن بی‌هوازی(UASB) [16]را در تولید بیوگاز از الیاف نساجی زائد تحت شرایط بسته و نیمه مداوم مورد بررسی قرار دادند. استفاده از فرایند دو مرحله‌ای تولید متان را تا 80% بازده تئوری افزایش داد و فاز تاخیر[17]را از 15 روز به 4 روز کاهش داد.

جیحانی‌پور و همكارانش[9]، تولید اتانول از پنبه و پارچه‌ی جین[18] استفاده‌شده را مورد بررسی قرار دادند. در پارچه پیش‌فرآوری نشده پس از 24 ساعت هیدرولیز و یک روز تخمیر[19] بازده 25-26 %  برابر  بازده تئوری بود. پیش‌فرآوری با اسید فسفریک[20] غلیظ تولید اتانول را تا 66% بازده تئوری افزایش داد. هیدرولیز قلیایی با سود 0-20 % در دماهای صفر،23 و100 درجه سانتی گراد انجام گرفت. در نهایت تحت شرایط بهینه (NaOH 12%،  صفر درجه سانتیگراد و زمان 3 ساعت) پس از 24 ساعت هیدرولیز آنزیمی به 1/85 % بازده تئوری و پس از 4 روز هیدرولیز به 1/99% بازده تئوری دست یافتند.

غلامزاد و همکاران[10]، به منظور افزایش بازده تولید اتانول پیش‌فرآوری با حلال‌های قلیایی، پیش‌فرآوری با فسفریک اسید 85 % و پیش‌فرآوری با نرمال متیل مورفولین نرمال اکسید را مورد بررسی قرار دادند. نتایج حاصله نشان داد که، بازده هیدرولیز آنزیمی نمونه های پیش ‌فرآوری شده با حلال‌های قلیایی بیش از 80 % و با حلال‌های فسفریک اسید و نرمال متیل مورفولین نرمال اکسید به ترتیب بیش از 99 و 94 % بود.در حالی که پارچه پیش‌فرآوری نشده این مقدار برابر 3/46 % بود.

شین و همکاران[11]، جهت افزایش میزان تولید قند آنزیمی و جداسازی پلی‌استر از الیاف نساجی زائد پنبه‌ای، از پیش‌فرآوری با حلال فسفریک اسید استفاده كردند. بررسی تاثیر شرایط پیش‌فرآوری چون غلظت فسفریک اسید، دما، زمان و نسبت سوبسترا به فسفریک اسید نشان داد که بازیافت کامل پلی استر با افزایش غلظت، دما، زمان و با کاهش نسبت جامد به حلال افزایش می‌یابد. میزان تولید قند و بازیافت 100% پلی‌استر در شرایط بهینه (غلظت فسفریک اسید 85%، دمای  50، به مدت 7 ساعت و نسبت 1 به 15 )بدست آمد.

خرید اینترنتی فایل متن کامل :

 

 پایان نامه و مقاله

 

مواد لیگنوسلولزی زائد ناشی از صنایع کشاورزی ( کاه گندم، تفاله ی نیشکر، علوفه ی ذرت )، جنگلداری ( چوب های سخت و نرم ) و شهرنشینی منابع ارزان‌قیمت، دردسترس و منابع تجدید پذیر انرژی هستند که می‌توانند در تهیه محصولات بیولوژیکی مورد استفاده قرار گیرند. این مواد عمدتاً از سلولز، لیگنین و همی سلولز تشکیل شده اند. سلولز و همی­سلولز دارای ساختار کربوهیدراتی می­باشند و می­توانند به راحتی به محصولات بیولوژیکی تبدیل شوند. اما لیگنین یک پلیمر آروماتیکی با ساختار پیچیده می­باشد که بصورت یک غشا اطراف ناحیه­ی کربوهیدراتی را احاطه کرده و مانع دسترسی به ناحیه­ی کربوهیدراتی است. لذا عموما یک مرحله ابتدایی پیش‌فرآوری پیش از استفاده از این مواد در مرحله تبدیل بیولوژیکی جهت حذف لیگنین و کاهش کریستالینیتی سلولز مورد نیاز است. پیش‌فرآوری مورد استفاده در این پژوهش تاکنون برای مواد سلولزی استفاده نشده‌است لذا در ادامه به معدود کارهای انجام شده در این زمینه روی مواد لیگنوسلولزی اشاره داریم[12] .

یانگ و همکاران[13]، از فرآوری کاه برنج [21]با کربنات سدیم و سولفات سدیم جهت بهبود بازده تولید اتانول استفاده کردند. نتایج تاثیر مثبت هردو نمک معدنی کربنات سدیم و سولفات سدیم را در زیست تخریب‌پذیری کاه برنج تایید کرد. آنها بازده تولید قند را هنگام استفاده از کربنات سدیم با نسبت وزنی 1 به صفر (نسبت به سولفات سدیم) در دمای 140 درجه سانتیگراد با نسبت وزنی سوبسترا به محلول 12 درصد و با بهره گرفتن از مقدار 20 FPU به‌ازای هر گرم سلولز، به ترتیب برای قند کل، گلوکان[22] و زایلان[23]، 1/67، 4/74 و 7/53 درصد و همچنین درصد تبدیل پلی‌ساکاریدها را 9/88 درصد گزارش کردند.

صالحی و همکاران[14]، از فرآوری کاه برنج با کربنات سدیم در فشار بالا جهت بهبود بازده تولید اتانول استفاده کردند. در نهایت شرایط بهینه فرآوری در غلظت 5/0 مولار کربنات سدیم و دمای 180 درجه سانتی گراد به مدت 120 دقیقه حاصل شد. تولید اتانول با بهره گرفتن از فرآوری مذکور از 2/90 گرم بر لیتر به 4/351 گرم بر لیتر رسید.

خالقیان[15]، از فرآوری با کربنات سدیم جهت جداسازی سیلیس از کاه برنج به منظور بهبود تولید اتانول از آن استفاده کرد. نتایج نشان داد که با افزایش دما بازده تولید اتانول افزایش داشت. شرایط بهینه در غلظت 5/0 مولار کربنات سدیم و دمای 100 درجه سانتی‌گراد به مدت 3 ساعت حاصل شد.تحت شرایط بهینه عمل پیش‌فرآوری بازده تولید اتانول را از 8/39 % تا 2/83 % افزایش نشان‌داد.

[1] Fiber

[2] Waste textiles

[3] Reuse (second hand clothing)

[4] Remanufacture (filling materials and other uses of textile pieces)

[5] Recycling

[6] Landfilling and incineration

[7] Dioxins

[8] Anaerobic digestion

[9] Greenhouse gases

[10] Cotton fiber

[11] Pretreatment

[12] N-Methymorpholine N-oxide (نرمال متیل مورفولین نرمال اکسید)

[13] Ballooning

[14] Swelling

[15] Continuously stirred tank reactor

[16] Upflow anaerobic sludge blanket bed

[17] Lag phase

[18] Jean

[19] Fermentation

[20] Phosphoric acid

[21] Rice straw

[22] Glucan

[23] Xylan

 


 
موضوعات: بدون موضوع  لینک ثابت


فرم در حال بارگذاری ...