استفاده از فیلم­ها و تصاویری با قدرت تفکیک­پذیری بالا، در اکثر کاربردهای الکترونیکی مورد نیاز است. تمایل برای استفاده از تصاویری با وضوح بالا از دو زمینه اصلی نشات می­گیرد: بهبود اطلاعات تصویری برای تفسیر انسان؛ و کمک به درک دستگاه­های خودکار. وضوح تصویر، جزئیات موجود در تصویر را توصیف می­ کند. در وضوح بالاتر، جزئیات تصویر بیشتر است. وضوح یک تصویر دیجیتال را می‌توان در بسیاری از زمینه های مختلف طبقه بندی کرد: وضوح پیکسلی، وضوح فضایی، وضوح طیفی، وضوح زمانی و وضوح رادیومتری [1]. در این پایان نامه ، مباحث در حوزه­ وضوح فضایی مطرح می­ شود.

     وضوح فضایی: یک تصویر دیجیتال از عناصر تصویر کوچکی به نام پیکسل ساخته شده است. وضوح فضایی، به تراکم پیکسل­ها در یک تصویر اشاره دارد و معیار سنجش آن پیکسل در واحد سطح است.

     شکل 1-1 آزمون کلاسیک برای تعیین وضوح فضایی یک سیستم تصویربرداری را نشان می‌دهد. وضوح فضایی تصویر ابتدا توسط حسگرهای تصویربرداری و یا دستگاه اکتساب تصویر محدود می­ شود. در دوربین دیجیتال، تصویربرداری بر روی فیلم صورت نمی‌گیرد بلکه توسط یک حسگر حساس (دستگاه جفت‌کننده­ بار (CCD) [1] یا نیم‌رسانای اکسید فلزی مکمل (CMOS) [2] ) انجام می‌پذیرد. این حسگرها معمولاً در یک آرایه دو بعدی، برای گرفتن سیگنال تصویر دو بعدی مرتب شده ­اند. در وهله اول، اندازه حسگر و یا به طور معادل تعداد عناصر حسگر به ازای هر واحد سطح، وضوح فضایی تصویر را تعیین می­ کند. حسگرها با تراکم بالاتر، وضوح فضایی بیشتری را برای سیستم تصویربرداری ممکن می­سازد. سیستم تصویربرداری با آشکارسازهای ناکافی، تصاویری کم وضوح با اثرات بلوکی ایجاد می­ کند که ناشی از فرکانس پایین نمونه برداری فضایی است. تلاش‌های بسیاری جهت افزایش وضوح تصاویر دیجیتالی صورت گرفته­ است، که به دو بخش کلی نرم‌افزاری و سخت‌افزاری قابل تقسیم بندی می‌باشند.

شكل 1-1  الگوی وضوح USAF 1951، آزمونی کلاسیک، که برای تعیین وضوح سیستم و حسگرهای تصویربرداری استفاده می­ شود [3].

 در بخش سخت‌افزاری با هرچه غنی­تر نمودن تعداد پیکسل‌های موجود بر روی حسگرهای دوربین‌های دیجیتالی در واحد سطح، می‌توان درجه تفکیک تصویر را افزایش داد. بعلاوه، با هرچه کوچکتر نمودن سلول‌های حسگرهای دوربین‌های دیجیتالی، مقدار نور مؤثر دریافت شده توسط هر سلول، کاهش می‌یابد؛ البته می‌توان با ایجاد شبکه‌ای از عدسی‌های محدب بر روی لایه فوقانی سلول‌های حسگر، مقدار نور مؤثر دریافتی توسط هر سلول حسگر را افرایش داد. لیکن به دلیل وجود تعداد بسیار زیاد سلول‌های حسگر، نویز ضربه ای ناشی از قطع و وصل جریان در درون این شبکه سلولی، همچنان وجود داشته و عامل مؤثری جهت کاهش کیفیت تصویر نهایی می‌گردد[2].

     در حالی که وضوح فضایی تصویر توسط حسگرهای تصویر محدود می­ شود، جزئیات تصویر (باندهای فرکانس بالا) نیز به دلیل تاری لنز (مرتبط با تابع نقطه گستر حسگر)، اثرات انحراف لنز، انکسار روزنه و تاری نوری با توجه به حرکت، محدود می­شوند. بنابراین روش سخت‌افزاری جهت رسیدن به تصاویری با کیفیت و وضوح بالاتر، بسیار پرهزینه و عملاً تا حدی غیر ممکن می‌باشد و معمولاً نمی‌توان از حد معینی، بدلیل محدودیت‌های تکنیکی موجود در تکنولوژی ساخت مدارات مجتمع، فراتر رفت. علاوه بر هزینه، وضوح یک دوربین نظارتی نیز به علت سرعت دوربین و سخت افزار ذخیره سازی محدود شده است. در بعضی موارد دیگر مانند تصاویر ماهواره­ای، استفاده از

خرید اینترنتی فایل متن کامل :

 

 پایان نامه

 حسگرهای وضوح بالا به دلیل محدودیت‌های فیزیکی آن دشوار است.

استفاده از روش نرم‌افزاری، جهت پذیرش خرابی­های تصویر و استفاده از پردازش سیگنال در پس پردازش عکس­های گرفته شده، به منظور تعامل بین هزینه­ های محاسباتی با هزینه­ های سخت افزاری، مطرح می‌گردد. روش­های نرم افزاری از لحاظ اقتصادی مقرون به صرفه می‌باشد و امکان تولید تصویری با وضوح بالاتر توسط همان دوربین‌های تصویربرداری دیجیتالی کم وضوح را فراهم می­آورد.

یکی از تکنیک‌های مطرح شده در بعد نرم‌افزاری، جهت افزایش کیفیت تصویر چه از لحاظ تعداد پیکسل‌ها و چه از لحاظ کاهش مقدار نویز، تکنیک فراتفکیک پذیری (SR)[3]می‌باشد. این تکنیک از لحاظ نامگذاری بدلیل آنکه قادر خواهیم بود از محدوده توانایی سیستم تصویر برداری فراتر رویم، فرا تفکیک پذیری نامیده می‌شود، و عمدتا به دو گروه روش­های مبتنی بر یادگیری و روش­های مبتنی بر بازسازی چند فریمی تقسیم می­شوند [4]. در روش­های مبتنی بر یادگیری، تنها از یک تصویر کم وضوح (LR)[4] برای ایجاد تصویری با وضوح بالا (HR)[5]  استفاده می­ شود. این رویکرد، زیر گروهی از روش های یادگیری ماشین است. برخی از روش­های پیشنهادی در این حوزه در [10-4] آورده شده است. گروه بعدی، روش­های مبتنی بر بازسازی چندفریمی است که تمرکز ما در این پایان نامه بر روی این دسته از تکنیک­ها می­باشد.

هر فریم کم وضوح، مشاهده اعوجاجی از صحنه واقعی است. فراتفکیک­پذیری تنها در صورتی که حرکت در حد کسری از واحد پیکسل بین این فریم وضوح پایین وجود داشته باشد، امکان پذیر است. شکل 1-2  نمودار ساده­ای از توصیف ایده اولیه بازسازی SR را نشان می­دهد. در فرایند تصویربرداری، دوربین چندین فریم LR را از صحنهHR  ضبط می­ کند. این تصاویر LR، نسبت به یکدیگر شیفت­های حد کسری از واحد پیکسل دارند و همچنین با نرخ پایین نمونه­برداری شده ­اند. ساخت و ساز تکنیک­های SR چند فریمی، معکوس این فرایند است؛ همترازی مشاهدات LR  در دقت کسری از پیکسل، و ترکیب آن‌ ها به یک شبکه تصویر HR (درون‌یابی) که حاصل آن غلبه بر محدودیت­های تصویربرداری دوربین است.

شکل 1-2  ایده اصلی بازسازی فراتفکیک پذیری از فریم­های کم وضوح. حرکت نسبی فریم های کم وضوح به اندازه کسری از پیکسل، در بازسازی تصویر سوپروضوح کمک می کند[3].

اصول اولیه الگوریتم فراتفکیک­پذیری مبتنی بر حرکت را با آزمایش بسیار ساده­ای که در شکل 1-3 نشان داده شده، توضیح می­دهیم. مطابق شکل 1-3(الف)، صحنه متشکل از چهار پیکسل با وضوح بالا است. دوربین خیالی با حرکت کسری از پیکسل کنترل شده، متشکل از تنها یک پیکسل، قطاری از تصاویر را از این صحنه را ایجاد می­ کند. شکل­های 1-3(ب)-(ه)، چگونگی ایجاد این تصاویر را نشان می­دهد. البته هیچ کدام از این تصاویر با کیفیت پایین نمی‌تواند جزئیات تصویر زمینه­ای را نشان دهد. با فرض این که تابع نقطه گستر (PSF)[7] دوربین خیالی (که پدیده­ ماتی نوری در یک دوربین را مدل می­ کند) یک تابع خطی شناخته شده است، و سطح خاکستری تمام پیکسل­های مرزی صفر است، معادلات زیر، تصاویر کم وضوح تار شده را با نوع وضوح بالا مربوط با می­سازد [11]:                          

 


 
موضوعات: بدون موضوع  لینک ثابت


فرم در حال بارگذاری ...